当前位置 > CPDA数据分析师 > “数”业专攻 > SPSS移动平均一点也不神秘

3d试机号今天:SPSS移动平均一点也不神秘

喜乐彩注册 www.jj1v.cn 来源:数据分析师 CPDA | 时间:2015-09-07 | 作者:admin

预测才是数据分析的真谛,通过历史数据,预测未来的各种可能性,针对预测的结果防范于未然。预测方法有很多种,包括定性以及定量方法。其中,时间序列预测,它不用过多考虑内部具体的、错综复杂的影响因素,是“历史重演”的惯性假设条件下,基于外部数据的对未来的估计。

什么是移动平均?

最简单,也是最常用的时间序列分析是移动平均法,任何周期的预测值都是过去几个周期观测值的平均值。要执行移动平均法,首先需要选择一个跨度,即每次移动平均的周期。例如,我们假设数据是每月的数据,跨度选择5个月,因此下个月的预测值是前5个月值得平均值。注意,跨度越大,预测序列就越平滑。SPSS统计分析工具提供了便捷的移动平均模型,今天一起来揭开它的神秘。

SPSS移动平均分析实例

数据“SPSS移动平均分析实例”,其中变量sales为某个公司1986-1997年间各个季度某商品的销售量数据,用移动平均法来预测1998年1季度销售额及98年2季度的销售额。

2

菜单操作步骤

(1)“转换”——“创建时间序列”

(2)将“销售量”移动至右侧框内,新的变量命名为:移动平均;

(3)函数选择:先前移动平均,跨度选择5;

(4)单击“更改”

备注:(此案例旨在说明SPSS移动平均的过程,跨度的大小不再考虑。)

3

此时,在数据集界面,我们可以看到,1998年1季度预测值为:4490.52,如果我们继续这个步骤来预测1998年2季度,由于1998年1季度并没有真实的观测值,一般在这种情况下,多采用相应的预测值代替,按照同样的方法,我们可以得到,1998年2季度的预测值为:4483.43。

如何来衡量移动平均的误差

最简单是采用平均绝对误差MAE,为n个预测值与观测值误差的平均值。通过计算新的变量,可轻松得到。本例跨度为5的情况下,其MAE为:569.5,可见该值较大,平均绝对误差比较大,移动平均的效果并不明显。

4

必须得强调的几点

(1)时间序列存在比较明显的季节性趋势时,不适于使用移动平均;

(2)时间序列存在比较明显的发展趋势时,不适于使用移动平均;

上面这个案例,从时间序列图上,可以看出,存在明显的趋势因素及季节性因素,综合而言,并不适用于使用移动平均,最后由较高的MAE也可以反映出这一点,因此在使用移动平均前需要重点观察序列的趋势。


(来源:中国统计网)

 

  • 何穗翻牌吴亦凡鹿晗 明星健身房宣传片大爆料健身 明星 2019-05-24
  • 2013环球企业领袖宁夏圆桌会议现场 2019-05-24
  • 南通如皋为应对督察“回头看”违法掩埋危险废物 2019-05-02
  • 北京市纪委监委通报:副局级干部55次坐头等舱被处分 2019-05-02
  • 说的有道理 。说明我们的教育方向确实是有问题,毛主席当年对教育领域的有关指示是正确的。 2019-04-30
  • 山西:今年汛期降雨量偏多 各部门未雨绸缪全力备汛 2019-04-17
  • 全国人大代表、三角轮胎董事长丁玉华去世 2019-04-17
  • 广州市海珠区人民法院公告专栏 2019-04-09
  • 动漫微视频:春天里的叮嘱与承诺 2019-04-09
  • 【新时代 新作为 新篇章】牢记嘱托 打赢脱贫攻坚战 2019-04-08
  • 怎么偷梁换柱?请具体说明[微笑] 2019-04-08
  • 对市人民政府推进民生基础设施项目、解决历史遗留问题情况开展专题询问 2019-04-06
  • 中年不发福!51岁景岗山紧身衣秀健硕身材 2019-04-06
  • 女子围甲,今年有看头 2019-04-02
  • 广州女主播深夜直播卸妆遇停水 快递小哥28分钟送上门 2019-04-01
  • 511| 583| 657| 818| 512| 407| 427| 754| 403| 720|