当前位置 > CPDA数据分析师 > “数”业专攻 > 数据分析培训系列(数据挖掘)--分类算法之贝叶斯(三)

双色球彩票中奖规则:数据分析培训系列(数据挖掘)--分类算法之贝叶斯(三)

喜乐彩注册 www.jj1v.cn 来源:数据分析师 CPDA | 时间:2015-07-24 | 作者:

5 朴素贝叶斯分类器举例

考虑下表中的数据集,我们可以计算每个分类属性的类条件概率,同时利用前面介绍的方法计算连续属性的样本均值和方差。

tid 有房 婚姻状况 年收入 拖欠贷款
1 单身 125k
2 已婚 100k
3 单身 70k
4 已婚 120k
5 离异 95k
6 已婚 60k
7 离异 220k
8 单身 85k
9 已婚 75k
10 单身 90k

为了预测测试记录X=(有房=否,婚姻状况=已婚,年收入=$120k)的类标号,需要计算后研概率P(no|X)和P(yes|X),即通过计算先验概率P(Y)和类条件1的乘积来估计。每个类的先验概率可以通过计算属于该类的训练记录所占的比例来估计。

P(X |no)=P(有房=否|no)* P(婚姻状况=已婚|no) * P(年收入=$120k|no)=4/7*4/7*0.0072=0.0024

P(Y |no)=P(有房=否|yes)* P(婚姻状况=已婚|yes) * P(年收入=$120k |yes)=1*0*1.2*10-9=0

放到一起可得到类no的后研概率P(no |X)=α*7/10*0.0024=0.0016α,其中α=1/P(X)是个常量。同理,可以得到类yes的后研概率等于0,即P(no |X)> P(yes |X),所以记录分类为no。

 

6 条件概率的m估计

前面的例子体现了从训练数据估计后研概率时的一个潜在问题:如果有一个属性的类条件概了等于0,则整个类的后研概率就等于0。仅使用记录比例来估计类条件概率的方法显得太脆弱了,尤其是当训练样例很少而属性数目又很大时。

一种更极端的情况是,当训练样例不能覆盖那么多的属性值时,我们可能就无法分类某些测试记录。例如,如果P(婚姻状况=离婚|no)为0而不是1/7,那么具有属性集X=(有房=是,婚姻状况=离婚,年收入=$120k)的记录的类条件概率如下:

P(no|X)=3/7*0*0.0072=0

P(yes|X)=0*1/3*1.2*10-9=0

朴素贝叶斯分类器无法分类该记录。解决该问题的途径是使用m估计方法来估计条件概率:

2先

 

其中,n是类yj中的实例总数,nc是类yj的训练样例中取值xi的样例数,m是称为等价样本太小的参数,而p是用户指定的参数。如果没有训练集(即n=0),则P(xi|yj)=p。因此p可以看作是在类yj的记录中观察属性值xi的先验概率。等级样本大小决定先验概率p和观测概率nc/n之间的平衡。

在前面的例子中,条件概率P(婚姻状况=已婚|yes)=0,因为类中没有训练样例含有该属性值。在使用m估计方法中,m=3,p=1/3,则条件概率不再是0

P(婚姻状况=已婚|yes)=(0+3*1/3)/(3+3)=1/6

如果假设对类yes的所有属性p=1/3,则类no的所有属性p=2/3,则:

P(X |no)=P(有房=否|no)* P(婚姻状况=已婚|no) * P(年收入=$120k|no)=6/10*6/10*0.0072=0.0026

P(Y |no)=P(有房=否|yes)* P(婚姻状况=已婚|yes) * P(年收入=$120k |yes)=4/6*1/6*1.2*10-9=1.3*10-10

类no的后研概率P(no|X)=α*7/10*0.0026=0.0018α,而类yes的后研概率p(yes|X)= α*3/10*1.3*10-10=4*10-11α。尽管分类结果不变,但是当训练样例较少时,m估计通常是一种更加健壮的概率估计方法。

 

7 朴素贝叶斯分类器的特征

  • 面对孤立的噪声点,朴素贝叶斯分类器是健壮的。因为在从数据中估计条件概率时,这些点被平均。通过在建模和分类是忽略样例,朴素贝叶斯分类器也可以处理属性值遗漏问题。
  • 面对无关属性,该分类器是健壮的。如果xi是无关属性,那么p(xi|Y)几乎变成了均匀分布。Xi的类条件概率不会对总的后研概率的计算产生影响。
  • 相关属性可能会降低朴素贝叶斯分类器的性能,因为对这些属性,条件独立的假设已不成立。例如,考虑下面的概率:

P(A=0|Y=0)=0.1, P(A=1|Y=0)=0.6, P(A=0|Y=1)=0.6, P(A=1|Y=1)=0.4

其中,A是二元属性,Y是二元类变量。假设存在另一个二值属性B,当Y=0时,B与A完全相关;当Y=1时,B与A相互独立。简单的说,假设B的类条件概率与A相同。给定一个记录,含有属性A=0,B=0,其后研概率计算如下:

2

如果P(Y=0)=P(Y=1),则朴素贝叶斯分类器将把记录指派到 类1.然而,事实上

P(A=0,B=0|Y=0)=P(A=0|Y=0)=0.4

因为当Y=0时,A和B完全相关。结果,Y=0的后研概率是:

4

比y=1的后研概率大,因此,该记录实际应该分类为类0。

 

下一节,我们将详细描述贝叶斯误差率,并对贝叶斯信念网络进行初步介绍。

 

 

本文由 喜乐彩注册整理完成,严禁转载

  • 南通如皋为应对督察“回头看”违法掩埋危险废物 2019-05-02
  • 北京市纪委监委通报:副局级干部55次坐头等舱被处分 2019-05-02
  • 说的有道理 。说明我们的教育方向确实是有问题,毛主席当年对教育领域的有关指示是正确的。 2019-04-30
  • 山西:今年汛期降雨量偏多 各部门未雨绸缪全力备汛 2019-04-17
  • 全国人大代表、三角轮胎董事长丁玉华去世 2019-04-17
  • 广州市海珠区人民法院公告专栏 2019-04-09
  • 动漫微视频:春天里的叮嘱与承诺 2019-04-09
  • 【新时代 新作为 新篇章】牢记嘱托 打赢脱贫攻坚战 2019-04-08
  • 怎么偷梁换柱?请具体说明[微笑] 2019-04-08
  • 对市人民政府推进民生基础设施项目、解决历史遗留问题情况开展专题询问 2019-04-06
  • 中年不发福!51岁景岗山紧身衣秀健硕身材 2019-04-06
  • 女子围甲,今年有看头 2019-04-02
  • 广州女主播深夜直播卸妆遇停水 快递小哥28分钟送上门 2019-04-01
  • Conférence de presse du Premier ministre chinois 2019-04-01
  • 你一人就代表了世人? 2019-03-25
  • 291| 728| 175| 782| 677| 950| 119| 35| 103| 331|